The Influence of Biochar Soil Amendments on Tree Health and Vitality

> Dr Glynn Percival and Miss Emma Schaffert Bartlett Tree Research Laboratory

What is Biochar?

A purified form of charcoal.

- When added to soil it:
- Increases CEC
- Improves water retention
- Improves fertiliser effectiveness

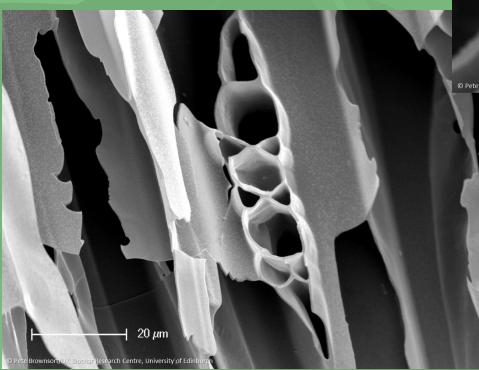
Benefits are now realised.

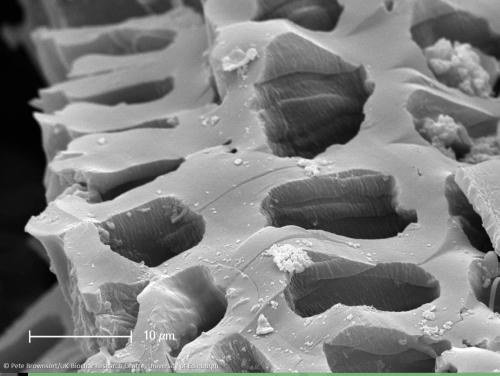
Treannent	Amendment (Mg ha⊸l)	Biomass production (^q %)	Plant height (%)	Ront biomass (%)	Shoer biomass (%)	Plant type	Soil type
Control	~	100	100	100	-	Sogi mees	Ciay loan
Wood charcoal Bark charcoal Activated charcoal	0.5 0.5 0.5	249 324 244	126 132 135	130 115 136	3	Sugi trees Sugi trees Sugi trees	Clay loam Clay loam Clay loam

Biochar now extensively used in

horticulture

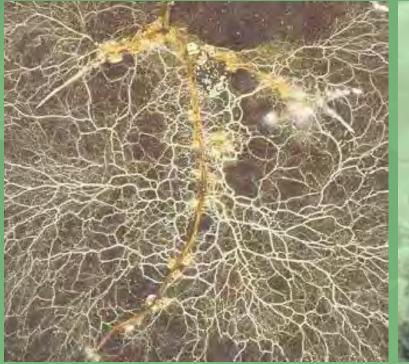
1 gram of Biochar has surface area of 2 tennis courts




Scanning electronic microscope image of biochar

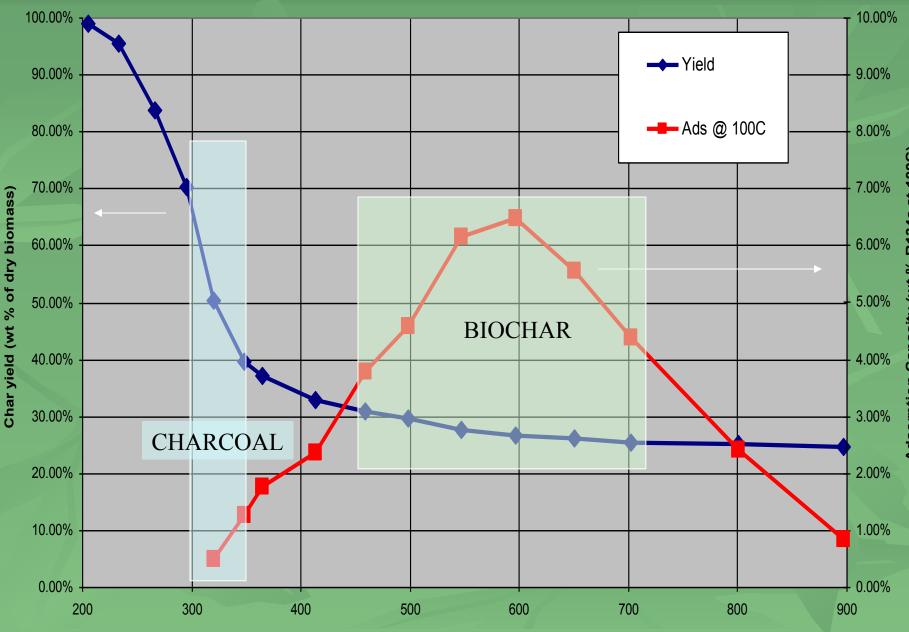
rgh

ete Brownsort/UK Biochar Research Centre,


© Pete Brownsort/UK Biochar Research Centre University of Edinburgh

© Pete Brownsort/UK Biochar Research Centre ,University of Edinburgh

Acts as a haven for mycorrhiza



Slides courtesy of J MacPhail

Mycorrhizae trapping nematodes with their filamentous hyphae

Slides courtesy of J MacPhail

Heat treatment temperature Celsius

Adsorption Capacity (wt % R134a at 100C)

Uses of Biochar – Transplant Survival

Horse chestnut (*Aesculus hippocastanum*): partial removal of root systems

Aesculus hippocastanum trial plot after biochar application

Horse chestnut Aesculus hippocastanum Planting

After planting

Year 1 results

Treatment	C r o w n coverage	SPAD	PI	Mortality (%)
Control (No Amendment)	3.5a	31.6a	4.3c	0
GroChar* (0.25kg m ²)	4.5cd	29.5a	4.2c	0
GroChar (0.5kg m ²)	4.3bc	32.7a	4.6c	0
GroChar (1.0kg m ²)	4.0b	30.1a	4.0bc	0
Bamboo Biochar (0.25kg m ²)	4.7d	31.3a	4.5c	0
Bamboo Biochar (0.5kg m ²)	3.3a	29.3a	3.1a	0
Bamboo Biochar (1.0kg m ²)	3.3a	31.7a	3.5ab	0

* Commercial enriched Biochar containing mycorrhiza, wormcasts and sea weed extracts

Control

GroChar

Unexpected side effect on leaf blotch and leaf miner severity

GroChar 0.50kg m²

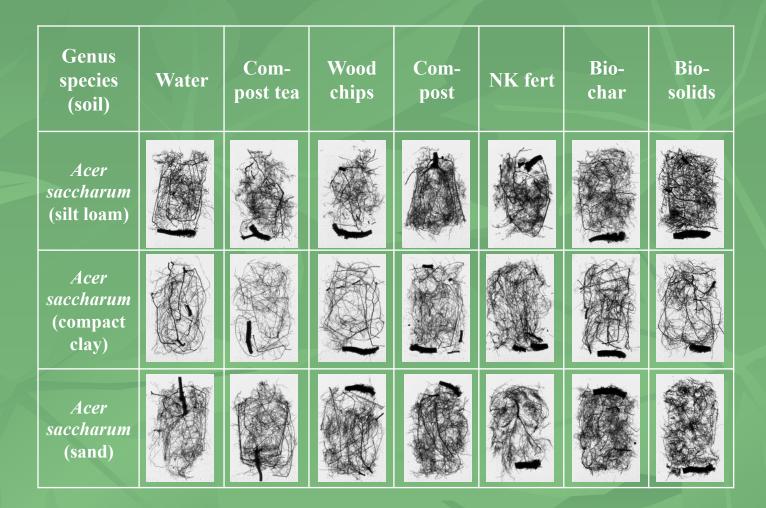
Pear (*Pyrus communis* 'Conference') Trial

Bare rooted stock used and root pruned to create a root:shoot ratio of 0:33; a ratio associated with transplant stress

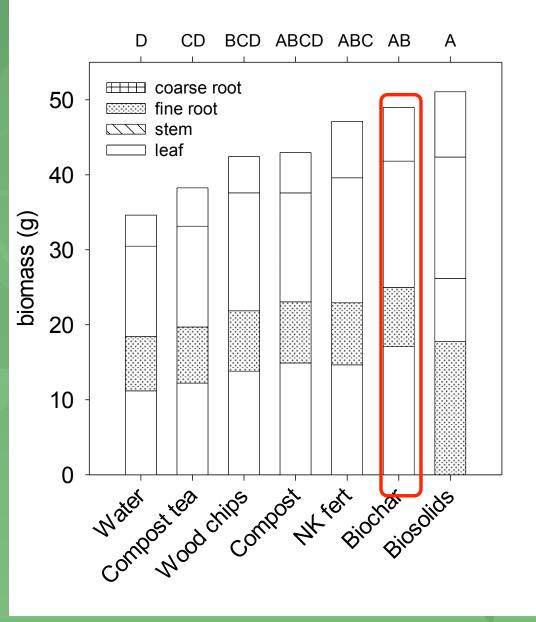
Pear (Pyrus communis 'Conference') Trial

20L HOLE DUG AND AMENDED WITH: BACKFILL – CONTROL MOLASSES PELLETS PURE BIOCHAR MOLASSES PELLETS + BIOCHAR (2.5%:2.5%) ALL PRODUCTS APPLIED AT 5% BY VOLUME

Pure Biochar + Organic BOOST 5% by vol


Pure Biochar 5%Controlby vol

TREATMENT	Leaf Chlorophyll Content	Leaf Photosynthetic Efficiency	Mortality
Control (No Amendment)	38.7	6.2	20
Molasses Pellets	42.3	7.1	0
Biochar	44.5	8.2*	0
Molasses Pellets + Biochar	49.9*	7.2	0
Organic BOOST	50.3*	11.1*	0
Organic BOOST + Biochar	50.1*	10.0*	0


Recent Research from the USA

[Scharenbroch, B.C., E. Meza, M. Catania, and K. Fite. 2013. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. Journal of Environmental Quality. doi:10.2134/jeq2013.04.0124]

Root scans from *Acer saccharum* in sand, silt loam, and compact clay

Tree growth Greenhouse experiment after 18 month Treatment effects: Total (P=0.0048) C. Root (*P*=0.0010) F. Root (P=0.0835) Stem (*P*=0.0036) Leaf (*P*<0.0001) [Scharenbroch et al. 2013]

BTRL trial: simulated planting pits of approx. 4.0 cu metre. – oak, maple

MGB 'Regal Prince' oak 'Pattern Perfect' maple

Gravel Biochar Mulch Month 12 after treatment

Gravel Biochar

Mulch

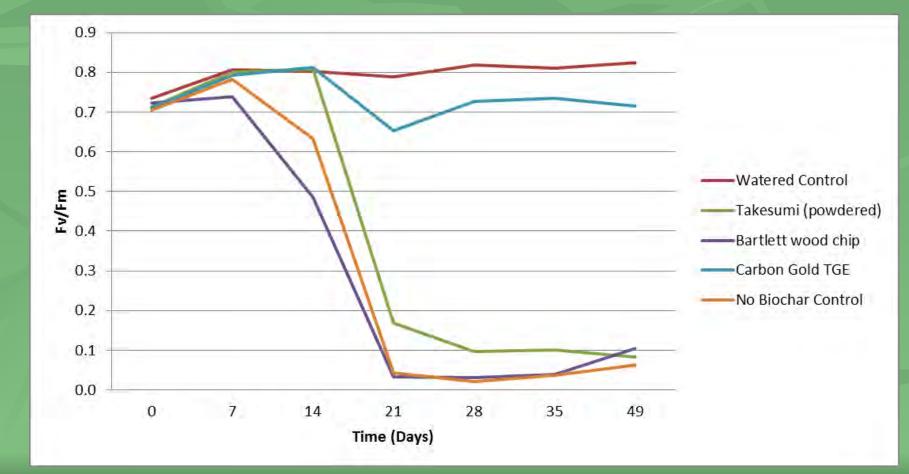
MGB 'Regal Prince' oak 'Pattern Perfect' maple

Biochar Gravel Mulch Biochar Gravel Mulch

Month 18 after treatment

Control (first growing season) Biochar

Cherry Drought Trial


 Irrigation was removed from
Prunus avium to monitor their drought response

 Above: Control with no soil amendment
Below: Treated with enriched biochar

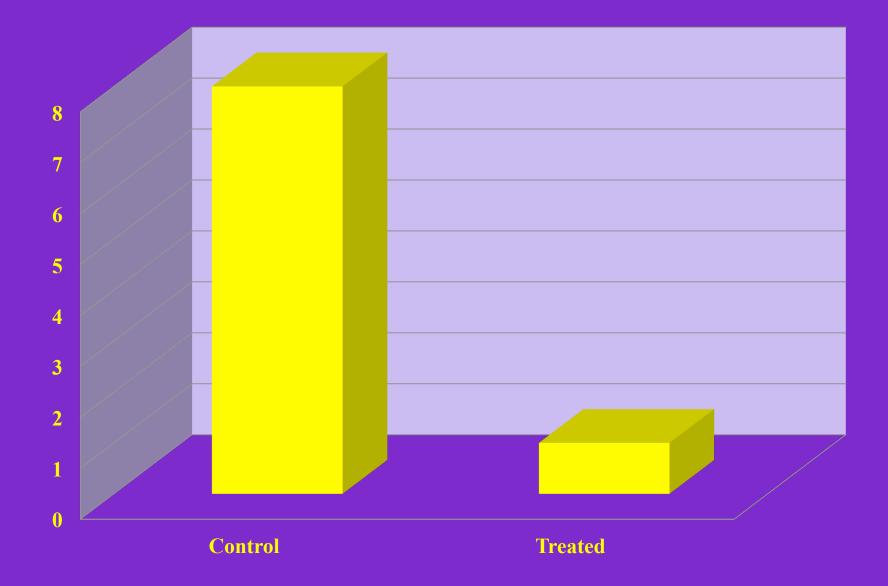
Leaf photosynthetic efficiency across time of drought-stressed Cherry saplings in different biochars

2015 repeat

Trees droughted for approximately 14 days
Currently in recovery period – data collection continues

Pest and Disease Management

Vinca and Gardenia inoculated with PhytophthoraControlCompostBiochar


se Scenerio

Number Trees Infected Over 2 Years

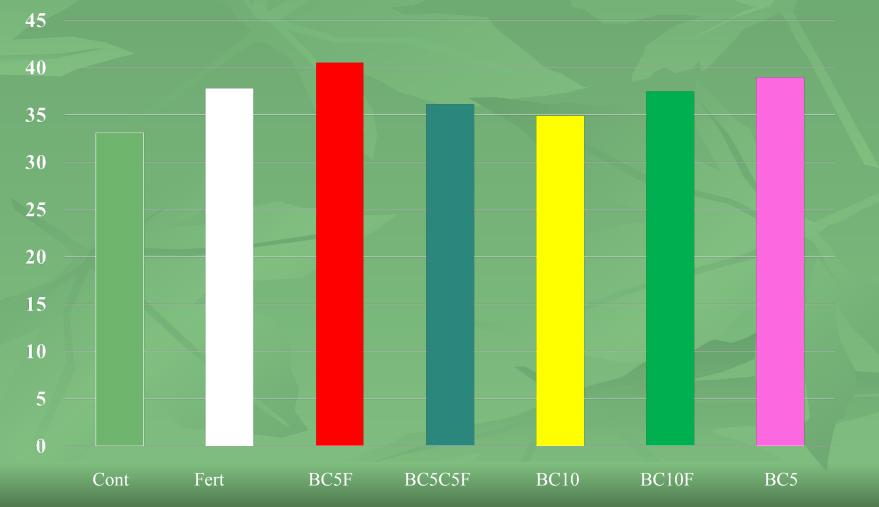
Ash Die-back

Ash Die-back

Ash Die-back Site Year 1

Ash Die-back site (Year 3)

Ash Die-back site


Treatment	Mortality		
	Year 1	Year 2	Year 3
Control	2	3	6
Air-spading	1	3	4
Mulch	0	0	3
GroChar	0	0	0
Air-spading + Mulch + GroChar	0	0	0

Ash Die-back – To date none of the Grochar, Grochar + Mulch treated trees have been infected.

Understanding how Biochar works: Induced resistance or improved tree vitality?

Total Phenols mg of GA/g of extract

Conclusions.

Use of enriched Biochar has consistently shown to:

- Enhance transplant survival
- Improve drought tolerance (other stressors under evaluation)
- Improve pest and disease resilience (Research ongoing in conjunction with CRD)
- Not all biochars created equal i.e. source material is important
- Nutrient drawdown although not recorded has been shown elsewhere 5% by soil volume has been shown to be optimal
- Combing Biochar with fertiliser can improve efficacy (research on going).
- Initial cost can be expensive, however, Biochar remains in soil for 5000 to 2000 years.

Bartlett Lab Staff At Work

