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Wide variation in growth environments

within urban areas.




hat are the major limitations to
tree establishmént in cha”enging 5
urban environments? _‘
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Few roots + small soil volumes + Eoor
surface Permeabilitg = water deficits!



= New ,
N hytologist Researc

Drought-induced xylem cavitation and hydraulic deterioration:
risk factors for urban trees under climate change?

Tadeja Savi, Stefano Bertuzzi, Salvatore Branca, Mauro Tretiach and Andrea Nardini

Dipartimento di Scienze della Vita, Universita di Trieste, Via L. Giorgieri 10, Trieste 34127, Traly
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Correlations between percentages of soil surface covered by impervious pavement and (a) predawn leaf
water potential (W), (b) percentage loss of hydraulic conductivity (PLC), (c) xylem water potential
inducing 50% PLC (W) and (d) safety margin calculated as the difference between Wsand minimum
seasonal xylem water potential (W.,), as measured in Quercus ilex trees growing at four experimental
sites. Mean values are reported (' SD). The regression lines together with r.and P values are also

reported.
Savi et al., (2014)



qug should we care?

Trees need hydraulic integrity if they are to provide
ecosystem services.

* Transpiration Evaporative cooling
 Growth == Carbon sequestration, Shading,




journal homepage: www.elsevier.com/locate/landurbplan
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Research Paper

Determinants of establishment survival for residential trees in @ CroseMark

Sacramento County, CA

Lara A. Roman#P* John J. Battles?, Joe R. McBride?

“Sacramento Tree Foundation may
implement further changes including
planting a higher proportion of
drought tolerant trees.”

“We observed higher survival for
species with low water use demand...”
“... drought tolerant trees may be more
able to withstand irrigation neglect.”
“... it may be prudent for this program
to plant more drought tolerant trees.”
“... climate appropriate species
selection influenced urban tree survival
during the establishment phase.”
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Overall survivorship for all planted shade trees (n = 370).



Can we select for Arougl’xt

tolerance? N
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Adaptations to limited water availability
vv

Avoidance of tree water deficit Tolerance of water deficit

vv

Maximizing water acquisition Reduce water use

< Osmotic adjustmeﬁD .
Increased hydraulic conductivity Stomatal closure Elastic adjustment - Physiological

< Low turgor loss point®»

Deep rooting Reduced leaf and stem growth . Morphological
Root proliferation Increased resistance to leaf water loss .
Leaf phenology

Leaf abscission . HiR G

Hirons 2013



Advice from

literature?

PRINCETUN#IH¥LD GUIDES
Gil Nelson, Christopher J. Earle,
and Richard Spellenberg
ILLUSTRATIONS BY DAVID MoRE
Edited by Amy K. Hughes
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Acer nigrum

Heat and drought tolerant (Dirr (2009)

Sensitive for heat and drought (Hightshoe 1988)

Prefers sites that are more humid (Beaulieu 2003)

Has a higher drought tolerance than sugar maple (Bassuk et al. 2009)

Acer negundo

Useful for sandy, dry to sterile soil (Kriissmann 1982)

Drought tolerant (Stoecklein 2001)

Its native habitat is along streams and ponds (Grimm 2002)

Native in moist habitats but perform well also in poor, wet, or dry
habitats (Dirr 2009)

Very heat and drought tolerant (Hightshoe 1988)

Grows along shores of permanent bodies of water (Kriissmann, 1986)
Like humid areas (Beaulieu 2003)

Grows along stream banks, flood plains, swamps (Spellenberg et al.
2014)

Native Trees, Shrubs,
and Vines for Urban
and Rural America

A Planting Dcs nManual for
Envi wonmcnta esigners

TREES

URBAN

LANDSCAPE

DIRR’S

ENCYCLOPEDIA OF

TREES
& SHRUBS

MICHAEL A. DIRR







Drought Tolerance Index

Scale Annual Distribution P:PET ratio Soil water  Duration of
ranking precipitation of potential dry period
(mm) precipitation (MPa)
(coefficient
of variation)
1 >600 Minimal >3.0 >-0.3 A few days
2 500-600 <10% 1.5:3 -0.3t0-0.8 A few weeks
3 400-500 10-15% 0.8-1.5 -0.8to-1.5 Uptoa
month
4 300-400 20-25% 0.5:0.8 -1.5t0-3  Two to three
months
5 <300 >25% <0.5 <-3 More than
three
months

Niinemets and Valladares 2006



ComParing different ‘drought’ traits with
cﬂrouglﬁt tolerance ranking

@) — R*=024

* Meta-analysis using data from:
— Niinemets and Valladares, (2006);
— Bartlett et al., (2012)
— Choatetal., (2012)

* Key drought tolerance traits often
become more variable rather than
scale linearly with drought .
tolerance ranking.

L]

¥ (MPa)
N

Good candidates for
urban trees?

W, (MPa)

Bpé Ag "Ms Sa

Drought Tolerance Ranking



Whg turgor loss?

Emlogy Letters, (2012) 15:393-%05 doi: 10.11114.1461-02482012.01751.x.

IDEA AND

PERSPECTIVE

* Leaf turgor loss point can be used

a S a U n |Ve rsa I m e a S u re Of The determinants of leaf turgor loss point and prediction of

drought tolerance of species and biomes: a global meta-analysis
L] L)

physiological drought tolerance o e o

that is quantifiable and measurable =i cooomras—omas s
showed that &, is the mgjor driver of . In contrast, & plays no direct role in driving drought tolerance within
ety protec e s, mechased and berthvory res idependen of ronghe erice

facing species
Scoffoni and Lawren Ssdk” impoved fheory and pracs e are needed for quintification of species olerances. Leaf water potental 2 turgor
Department of Ecology and Joss, or wiltng (feg), & classically ised a5 2 major phy i of plant waer stress
- . 3 e ) e o 905, UsA new equations giving both g, and relaive water content at mrgor loss point (RIWU.) 23 explicit fancions of
w = ¢ . - . ' ; osmatic potentl at full mrgor (1) and bulk modulus of dasticity (2). Sensitvity andwes and meta-aralyses
"Correspandence
= Email: lawran Sck@ucta.edy

These ﬁnd.mg\ clasfy biogeogrphic trends and the underiying basis of drought tolerance parameters with
and

Falggy Laes 2012) 15 393405

of species

eywords
Biogeography, biomes, climate, plant hydrulics, plant tris.

INTRODUCTION

Climate change is predicted to increase the incidence and severity of
droughts in ecosystems workdwide Sheffield & Wood 2008). Species
differences in drought mlerance are inegral determinants nolon.h' of
present distrbutions but ako of futwe sceasios, i

probabiity of extinctions (Fingelbrecht ef al 2007; Bonan 2008; l"eekv
etal 2011). Predicéing the impact of cimate change on plnt
performance and survivalisa major challenge facing plant science and
ecology (Griemon of al2011). However, there remain fndamentsl gaps
; sch traits can be used Sogical drongh

The ftup is classically measured in assessments of drought mlerance,
25 one of six key bulk leaf parameters relasing to cellular composison
and stractaral propersies typically calculated from a plot of leaf water
potental (Piuud against water volume in drying leaves, known a5 the
pressure-volume {p-v) curve (see pamer in Fig. 1and Table 1). The
Ry s often recognised a5 the ‘higher-level' trait that quantifies leaf
and plant drought wlerance most directy, because 2 more negative
e extends the range of Wiur at which the leaf remains mrgid and
maingins fancion (Sack e al 2)05; Lenz ef al A06). Plares with low
Ry tend to maintain stoman! conductance, hydraulic conductance,

tolerance. Cell furgor Joss is arguably the best recognised cassicd
indicator of plant water stress, having impacts on celiular swuctural
integriy, and whole-plant 7 (Kramer & Boyer
1995; McDowel 2011). Consequently, fhe leaf water potential at turgor
foss, o bulk furgor los point (g, units MPs) has been wsed t0 1sses

decades. Despite i ase for
quantifying ecological draught tolerance (Nainemets 2001; Brodribb &
Holbrook 20113 Lenz ef al 2006 Bisckmanet 4. 2010), no stady to oar
knowledge hus tested the rationship between flap and waer supply
within or acrass biomes, o its performance 35 an indicator of drought
tolerance relative 10 other plant traits. In addison, sgrificant unb.gn

2 the and

ying phy

ic gas exchange and growth at lower soil water potential
(', ), which is especially impormnt when droughts occur during the
growing season (Abams & Kubiske 1990; Sack # al 2005; Baltzer
et al 2008; Mitchell of ol 2008; Backman ef ol 2010). The %, isthusa
trait quantifying the ability © ‘tolerar’ drought, rather than © ‘avoid’
drought by eeasing gas exchange and surviving on swored water,
shedding leaves or dying back © below-ground parts or © seeds (eg.
23 done by anmuals, deqp-rooted perennials, or phreatophytes, CAM
succulents or drought-dormant species; Chaves of al 202 Brodrith
& Holbrook 2)05; Ogbumn & Fdwards 2010). The .y alio defines the
W, below which the plant cannat ke up sufficient water to recover

from wilting. Known as the ‘permanent wilfng poinf, this was
pm)nhoghhmmdma‘l’wof- 15 MPa (Veihmeyer

mmnu.?mfamd v in textbook: and
whole plant ecology g Jones 1992; |mmr~¢=\m)v=
toclarify & gventhe

eritical need for physiological measures that can be used to asess
species” drought tolerances and thus their Ekely sensitivity to ongaing

chimate change.

1928), but the Ty, is now known to vary xross
apecegmduu- may influence ecalogical distibutions with respect ©
waer availabiity. Some have focused on 2 second p-vcurve parameter
35 2 possble dewrminant of drought tolerance, the relative water
content at f, (RW (). The other four parameters, ie. the spoplastic
water fracfion (2, modulus of elasfcity (), asmotic porential at fall

© 2012 Hackwell Pubishing Lad/CNRS
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Method

* Assess osmotic potential at full turgor in
leaf discs based on Bartlett et al. (2012)
and subsequent meta-analysis

* Apply regression equation to determine
leaf water potential at turgor loss

* Rank species in terms of their
physiological drought tolerance

¥, (MPa)

Methods in Ecology and Evolution

Methods in Ecology and Evobaion 2012, 3, 880888 dor: 10.1111/5.2041-210X.2012.00230.x

Rapid determination of comparative drought tolerance
traits: using an osmometer to predict turgor loss point
Megan K. Bartlett'*, Christine Scoffoni’, Rico Ardy', Ya Zhang? Shanwen Sun?,

Kunfang Cao” and Lawren Sack'

'Depatment of Ecology and Evolution, University of California Los Angeles. 621 Charles E. Young Drive South, Los
Angeles, CA 90095, USA; and *Key Laborstory of Tropical Forest Ecology, Xshuangbanns Tropical Batanical
Gamlen, Chinese Academy of Scences, Mengls, Yunnan 666303, China

Eclogy Letters, (2012) 15:393-405 doi: 10.11114.1461-02482012.01751x

IDEA AND

PERSPECTIVE
The determinants of leaf turgor loss point and prediction of
drought tolerance of species and biomes: a global meta-analysis

lIJﬂ:l()O (MPa)
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Woo =-0.2554 + 1.1243 X ¥,

® Bartlett et al., (2012) data
— R?*=091
—— 95% Confidence Band
—— 95% Prediction Band
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Acer saccharum cultivar
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Seasonal osmotic acﬁus‘cment

Summer ¥, (MPa)
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Urban planting beds in Ithaca, NY, USA
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What’s on the horizon?
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Embolism in Trees

(a)

Interconduit pits in a relaxed state

no hydraulic stress:
Y = -1MPa in both
functional conduits

(b)
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drought stress:
Y =-4MPa in
functional condutis

Embolism resistant pits withstand air-seeding

drought stress:
Y =-4MPa in
functional conduits

Current Opinion in Plant Biology

Lens et al., 2013 Embolism resistance as a key

mechanism to understanding adaptive plant

strategies




Percentage | oss of 3drau|ic Concluctivitg —
Embolism Vulnerabi itg Curve

100

Jun jperus 88 D ursera _LI{&S_ ]

oosteosperm
Choat et al., 2012 Global convergence
in the vulnerability of forests to drought slope w
— From supplementary information I N0 O
Study evaluated 226 species from 81 sites safety
around the world . margin

-12 -10 -8 -6
¥, (MPa)

Embolism vulnerability curves showing percentage loss of hydraulic conductivity (PLC) as a function of xylem pressure
(W,). Curves are shown for the angiosperm species Bursera simaruba, a tropical rainforest species (blue curve), and the
gymnosperm Juniperus osteosperma, a dry forest species (red curve). Points show the xylem pressures at which PLC = 50%
Wso) and PLC = 88% Wss) for each species (Wso= -6.9 MPa and W -1 MPa for J.

osteosperma and B. simaruba, respectively). A smaller decrease in xylem pressure is required Wso ¥ ss in B. simaruba because
of the steeper slope of the curve between Wso and W 83. Wmin values are indicated by triangles and represent the minimum P«
measured in the field. The difference between Wmin and Wso (grey area) corresponds to a “safety margin”, which is 3.4 MPa
for J. osteosperma, while Wmin passes the Wso point marginally for B. simaruba, resulting in a slightly negative safety margin
and thus a more risky hydraulic strategy than J. osteosperma.



Quercus: Vulnerability to Cavitation

Vulnerability

curves to drought-induced
cavitation in several
European Quercus species
from different habitats. In this
figure, Loss of conductivity
or PLC is plotted as function
of water potential.

Vilagrosa et al., 2012

a) 100 |
(a) Q. faginea— ‘\

“"\. Q. robur
\

Loss of conductivity (%)

o 1 2 3 4 5 6 7 8
Length of aridity period (months)
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Adapted from: Hirons and Percival 2012






