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Ideal Risk Assessment Traits

Norris (2007) identified the
following ideal traits for risk
assessment methods

« Complete
— target-P failure-consequence
— coverage of conditions

 Robust

— insensitive to assumptions

 Credible

— Reasonable, believable,
verifiable
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Ideal Risk Assessment Traits

Norris (2007) identified the
following ideal traits for risk
assessment methods

« Feasible
— Data can actually be collected

 Economical
— Cost of data collection,
analysis, and reporting is
reasonable

 Repeatable

-Multiple folks can come to

similar conclusions
. http://itstartedwithasong.com/
« Valid
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Tree Risk Assessment

3 inputs (target — likelihood of failure — consequences) are shared
by all common assessment methods

¥ Implementation

TREE RISK ASSESSMENT IN URBAN AREAS
AND THE URBAN/RURAL |
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All currently accepted methods of risk assessment share a
common concern...
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How do we limit the impact of assessor bias and risk
perception to make risk assessments more robust and
repeatable?



Impact of Arborist on Risk
Assessments

296 Arborists assessed
three trees each.

Arborist

Compared sources of
variation among ratings/
Inputs

Impact of Assessor on Tree Risk Assessment Ratings and Prescribed Mitigation Measures
Andrew K. Koeser'” and E. Thomas Smilcyz

' Assistant Professor, Department of Environmental Horticulture, CLCE, IFAS, University of
Florida — Gulf Coast Research and Education Center, 14625 County Road 672, Wimauma, FL.

33598, United States




Failure Potential

Journal of Arboriculture 31(2): March 2005

QUANTIFIED TREE RISK ASSESSMENT USED IN

THE MANAGEMENT OF AMENITY TREES

By Michael J. Ellison

“Accurately assessing the probability that a tree or branch
will fail is highly dependent on the skill and experience of

the assessor.”
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Factors driving professional and public urban tree risk perception \!)Cmssmrk
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What drives risk perception?
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Logical Next Step...

Investigate our ablility to accurately assess
aspects of failure potential...




Perceived vs Real Target
Occupancy

Site 3 - Stadium Road
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Rated Occupancy (1-4)

FallSpring Non-Peak  Fall'Spring Peak ~ Summer Non-Peak Traffic Count

Scenario




Also....
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Traffic counters are rarely used in the
United States for arboriculture



Tree Risk Assessment Assessment

We know overall
risk ratings are
quite variable, but
how, how
consistent are
estimates of
target occupation
for a given site???

www.southeastroads.com

CWMc



Actual vs real target occupancy

4 sites shown 3 times each

Video clips varied by:
 Time Filmed (peak hours
vs off hours)

* Time of year (classes in/
out of session)

4 video stills with traffic data
shown after clips




How did we estimate occupancy?

Ccars




How did we estimate occupancy?

People




Table 1. Regression model for predicting visual target occupancy ratings given time of
assessment (i.e. time of day and season of year), actual occupancy (i.e., daily average with
traffic count data), rating index (i.e., median value of all ratings from an individual), and

factors related to professional experience.

Factor Coefhicient Standard emror F-value 93% Cllower 93% CI upper

Intercept 2.17 0.08 <0.001 2.01 2.32

Season — Fall/Spnng® ¢ 0.127 0.02

<0.001

Actual Occupancy 07 <0.001
Certified — Yes® .05 0.058 -0.18

Risk Experience — Yes 02 0« 0.587 -0.06

Adjusted R?

* Compared to base level “Summer™.
® Compared to base level “Non-peak™.

¢ Intemational Soclety of Arboriculture Certified Arbonst.
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Table 2. Regression model for predicting target occupancy ratings once actual occupancy

(i.e., daily average calculated with traffic count data) values displayed to respondents.

Predictors include actual occupancy, rating index (i.e., median value of all ratings from an

individual), and factors related to professional experience.

Factor Coefficient Standard emror F-value 9% Cllower 93% CI upper
Intercept 1.93 0.0/ <0.001 1.82 2.09
Actual Occupancy 0.11 <0.00 <0.001 0.10 0.12
Certified — Yes -0.13 0.05 0.001 -0.24 -0.06
Risk Expernience 0.01 0.04 0.771 -0.05 0.07
Adjusted R? 0.36

* Intermational Society of Arboriculture Certified Arbornst
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Lixslz=ccd of Impact
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Results

* Time of day (P-value < 0.001) significantly
influenced ratings, but not time of year (P-value =
0.130).

* Risk ratings derived from the video clips did
correlate actually occupancy (r = 0.29; P-value <
0.001), but seeing the data helped significantly (r =
0.62; P-value < 0.001)



Detecting Decay With Visual
[ndicators
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Frequency, Severity, and Detectability of Internal

Trunk Decay of Street Tree Quercus spp. in
Tampa, Florida, U.S.

Andrew K. Koeser, Drew C. McLean, Gitta Hasing, and R. Bruce Allison
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| (Southern live oak)




Table 3. Comparison of laurel oak (Quercus laurifolia) sireet frees in Tampa, Florida, U.S., with visual decay indicators and
internal stem decay (n = 86). Trees were assessed visually prior fo advanced assessment with a resistance-recording diill.

Decay severity Trees with positive/potential Actual number of trees Percent identified correctly
decay indicators with decay at this level* with visual assessment
0% 10 28 64.3%"
1%-10% 14 22 63.6%
11%-20% 5 9 55.6%
21%-30% 3 7 42.8%
31%-40% 5 6 83.3%
41%-50% - 4 100%
51%-60% 2 3 66%
61%-70% 5 5 100%
71%-80% 0 0 nfa
81%-90% 2 2 100%

* Based on resistance-recording drill measurement data.
"'To calculate this percentage, researchers compared the number of trees without positive/potential decay indicators (18) to the actually number of trees without decay (28).

Table 4. Comparison of live oak (Quercus virginiana) street frees in Tampa, Florida, U.S., with visual decay indicators and
internal stem decay (n = 153). Trees were assessed visually prior to advanced assessment with a resistance-recording diill.

Decay severity* Trees with positive/potential Actual number of trees Percent identified correctly
decay indicators with decay at this level* with visual assessment
0% 7 108 93.5%"
1%-10% 4 18 22.2%
11%-20% 1 16 6.3%
21%-30% 1 3 33.3%
31%-40% 0 2 0.0%
41%-50% 0 3 0.0%
51%-60% 0 0 nfa
61%-70% 0 1 0.0%
71%-80% 1 2 50.0%
81%-90% 0 0 nfa

* Based on resistance-recording drill measurement data.
T To calculate this percentage, researchers compared the number of trees without positive/potential decay indicators (101) to the actually number of trees without
decay (108).
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Take Home Message....

For some species, visual tree
assessment (basic) can be quite
effective in detecting internal
decay.

A basic assessment from a
trained arborist (CA/TRAQ) with
minimal experience was very
much in line with the output
from a resistance recording drill




Next Logical Questions...

 How do likelihood of failure
ratings derived from basic
assessments (VTAs) differ from
those derived from other
levels of assessment (i.e.,
limited visual/drive-by and
advanced assessment)

* Was this just one arborist
getting lucky? What happens
when multiple arborist
perform a similar experiment?




Assessment of Likelihood of Failure Using
Limited Visual, Basic, and Advanced
Assessment Techniques



Three Levels of Risk Assessment

 Level 1 — Limited
Visual (Walk- or Tree Risk
Drive-by) Assessment

 Level 2 — Basic
Assessment

 Level 3 —Advanced
Assessment




Impact of Level of Assessment on
Failure Potential Rating

e 70 Arborists
assessed 5 trees
going from LV to




Impact of Level of Assessment on
Failure Potential Rating

* At what point did
the added info
cease to impact
rating”?




Impact of Technology in Risk
Decision Making
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Resistance Recording Drill
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Sonic Tomography

www.PiCUS-Info.com
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Conclusions

Increasing the level of assessment often made
assessments most variable...not less.

Ratings were highest for basic assessments (visual and
mallet), but still similar to the drill

Limited visuals ratings tended to be lower (less seen)

Sonic tomography ratings also tended to be lower (eased
concerns)



Remember this study? The plot
thickens...

296 Arborists assessed
three trees each.

Arborist

Compared sources of
variation among ratings/
Inputs

Impact of Assessor on Tree Risk Assessment Ratings and Prescribed Mitigation Measures
Andrew K. Koeser'” and E. Thomas Smilcyz

' Assistant Professor, Department of Environmental Horticulture, CLCE, IFAS, University of
Florida — Gulf Coast Research and Education Center, 14625 County Road 672, Wimauma, FL.

33598, United States




Table 3. Instances where the risk assessment inputs (i.e., likelihood of impact, likelihood of failure, and consequence of failure) were
the most variable (only looking at cases where tests of equal variance were significant).

Statistical Test of Equal Variance
Significant Bartlett’s  Significant Levene's Significant Fligner-
Tesl (n = 46) Test (n=32) Killeen Test
Outcomes (n = 3())
Likelihood of Impact 8 : 19
Likelihood of Failure 2 2
Consequence of 9
Iailure
Significance (/*-value) <0.0001 <0.0001 <(.0001




Target Occupancy

Journal of Arboriculture 31(2): March 2005

QUANTIFIED TREE RISK ASSESSMENT USED IN

THE MANAGEMENT OF AMENITY TREES

By Michael J. Ellison

« " ..target value is the most significant and most easily
guantified element of the [risk] assessment”

« Echoed by in ISA TRAQ Training...now multiple targets
can be listed
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Relationship between perceived and actual occupancy rates in
urban settings

Ryan W. Klein?, Andrew K. Koeser™ - & Richard J. Hauer®, Gail Hansen®, Francisco J. Escobedo®

Time of day
influenced
ratings...

Site 3 - Stadium Road

Ratings more |- .|
consistent with = " F Ff i m s Tl HE
traffic data.

Fall'Spring Non-Peak Summer Non-Peak Traffic Count

- o
Sa-- Scenario
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Conclusions

North American arborists have long focused
solely on tree defects. This played out in
several studies.

We should take heart in knowing our basic
assessments can be quite consistent with
regard to failure potential.



Conclusions

Industry knowledge of tree biomechanics
remains a limitation when using advanced
assessment techniques, especially decay
detection devices which have been vetted In

peer review.

As with anything, these limitations can be
address with focused research and training
efforts.



Conclusions

For ISA TRAQ, Lol and CoF are low-
hanging fruit which, if addressed, could
greatly increase reproducibility.

Scientifically sound and unbiased research
may benefit risk assessment beyond those
commonly used in North America.



Conclusions

* Fancy equipment can give precise
estimates of decay and occupancy

* However, without defendable
thresholds or decision rules, risk
assessments will remain variable (if not
more variable).



Conclusions

 Variability exists even in relatively straight-forward
comparisons (occupancy in hours per day vs 4 point
rating for occupancy)

* Need to test to see how experience and training
(TRAQ) influences variability (and these results) for
basic assessments and for the advanced methods
tested here



